Motto:

"Unfortunately, phylogenetic analysis is frequently treated as a black box into which the data are fed and out of which 'The Tree' springs."

Introduction to chapter 11 of Molecular Systematics, 2nd ed., edited by Hillis/Moritz/Mable, 1996:407.

We shall not follow this rule - instead ...

The Distribution of Word Lists and its Impact on the Subgrouping of Languages

Hans J. Holm گئس گولع **Հանս Հոլմ** 공단스 홀음

1.1 Linguistic Approaches

 Traditional linguistic methods for 200 years only poor results

However ...

1.2 Quantitative Approaches

- Traditional linguistic methods for 200 years only poor results
- Quantitative attempts often no better:
 - proud of identifying 'Greek' vs. 'Germanic' (!)
 - often fixated on mechanistic rate assumption
 - confuse surface resemblance with genealogical relationship.

Step 1 - 'Era of Separation'

Mother language L_X splits into two daughter languages, both starting with

- 'k' = 100% inherited features,
- 'a' = 100% agreements.

Step 2:

Only L₁ changes 15%

$$\rightarrow$$
 a = 85 %

Nature of change:

Loss of inherited features

by

- independent
- irregular
- irreversible influences.

Step 3:

Also L₂ changes: 25 %

$$\rightarrow$$
 a = 64 %

"Hypergeometric process"

with parameters

- k₁ and k₂ preserved cognates
- a_{1.2} agreements

However:

2.2 Estimation of Universe

Universe 'N' at era of separation in fact unknown!

Only Hg allows to compute expected value by

$$\widehat{N} = \frac{k_1 \cdot k_2}{a_{1,2}}$$

3.1 Applications up to now

N defines state at era of split:

= ranked nodes of departure

Only few applications ...

3.1 Applications up to now

- N defines state at era of split:
- = ranked nodes of departure

applied to data of

- Pokorny 1959 by Holm (2000)
- Mixe-Zoquean by Cysouw et al. (2006)
- Lexikon der idg. Verben = LIV (Rix et al. 2001) in this paper

However:

3.2 Unwanted Dependence

Separation level N depends on residues 'k'

= Bias

But why ??

3.2 Unwanted Dependence

Separation level N
depends on residues 'k'
= Bias

logically not due to

- algorithm
- poor knowledge
- scatter

- 4. The Reason
- 4.1 Revisiting the Properties of Word Lists

Requirements of Hg fulfilled?

- draws independent? yes
- probability equal for every word? no !!!

How can we measure this?

- 4. The Reason
- 4.1 Revisiting the Properties of Word Lists

Requirements of Hg fulfilled?

- draws independent? yes
- probability equal for every word? no!!!

Necessary to do worldwide tests?

No - only distribution of concrete list needed!

4.2 Detecting the Distribution

Spreadsheet with 12 IE branches

4.3 Analysis of the Distribution

Frequency-ordered data display:

extreme left: some verbs in one language only

4.3 Analysis of the Distribution

Frequency-ordered data display:

- extreme left: some verbs in one language only
- left hand: many verbs in few languages

4.3 Analysis of the Distribution

Frequency-ordered data display:

- extreme left: some verbs in one language only
- left hand: many verbs in few languages
- right hand: fewer verbs in many languages

Question:

Where are connections with our formula ??

4.4 Detecting the Reason

'k' preserved cognates?
= area below curve!
a agreements?
= frequency / rank slices!

What, then is wrong here?

4.4 Detecting the Reason

'k' preserved cognates?
= area below curve!
a agreements?

= frequency / rank slices!

we perceive: languages with <u>low</u> 'k' own relatively <u>higher</u> proportion of 'a'.

Since a is denominator in

$$\widehat{N} = \frac{k_1 \cdot k_2}{a_{1,2}}$$

Result = false earlier split

5.1 Operationalization

 Calculate only data with same chance of being changed, > never use total numbers, but each slice at a time

But what about the scatter?

5.1 Operationalization

- Calculate only data with same chance of being changed, > never use total numbers, but each slice at a time
- Slices must be big enough to avoid unacceptable scatter, > use not
 - low frequency (left hand) slices alone, because low agreements > extreme scatter
 - high frequency (right hand) slices alone, because insignificant = uninformative

Best: Use all slices

6.1 From Final Matrix to New Subgrouping

- take arithmetic mean of all slices per language (eventually standardize to 100)
 - → final matrix of 11·12 / 2 = 66 nodes N between every pair of languages

Useful: Flatten the unsorted sequences according to prior knowledge or Bx-method (Holm 2005:640)

6.1 From Final Matrix to New Subgrouping

- take arithmetic mean of all slices per language (eventually standardize to 100)
 - → final matrix of 11·12 / 2 = 66 nodes N between every pair of languages
- <u>Building the tree</u>
 Not one way hill-climbing since no clusters, but proceed on 'broad front', first finding next node for every language separately!

6.1 From Final Matrix to New Subgrouping

Bx-flattening helped us to pre-order the data

Now we can reconstruct the tree, proceeding at broad front: -

Lang	Sla	Bal	Grm	Kel	Ita	Alb	Arm	Gre	Ana	Tok	Ira	Ind
Sla	Sla	74	104	120	157	110	140	135	135	121	131	163
Bal		Bal	105	115	120	103	141	143	185	140	141	143
Grm			Grm	110	113	111	124	115	141	132	137	135
Kel				Kel	93	126	115	138	122	136	130	142
Ita					Ita	103	118	106	129	117	124	122
Alb						Alb	93	94	98	124	115	113
Arm			0+				Arm	96	106	119	116	113
Gre			100000000	********				Gre	116	114	134	108
Ana						2.			Ana	100	124	108
Tok			0+							Tok	112	109
Ira											Ira	80
Ind							:					Ind
K :	265.4	308.1	332.1	181.5	299.1	74.8	100	398.7	139.6	145.4	323.8	424.9

highest

median

Latest

splits

Data: Arithmetic Mean of Rank Slices; LIV-2; Method: SLRD

7.1 The Tree

(by reitering this process ..)

7.2 Discussion

Found: bias in distribution, but Possibly more hidden bias in data from:

- Extremely different cultural background, e.g.
 - hunter- & gatherer communities in the north vs.
 - advaned civilisations in Anatolia
- Differences in reliability of research itself
- Peripheral (=conservative) vs. central (innovative) <u>position</u> of languages.
 - (Opposite to Nichols and MDS, which hold that changes must increase with distance)

7.3 Conclusion

Linguistically:

Result refutes early split of / from Anatolian!

Methodologically:

Distributional bias considered in now

"Separation Level Recovery accounting for Distribution" (SLRD).

- Regrettably: Large amount of data needed -

7.3 Conclusion

Linguistically:

Result refutes early split of / from Anatolian!

Methodologically:

Distributional bias considered in now

"Separation Level Recovery accounting for Distribution" (SLRD).

- Regrettably: Large amount of data needed -

What should we have learnt?

7.3 Conclusion

Never trust methods that only crank data through parsimony, compatibility, or MrBayes packages without regarding their hypergeometric behavior. Note that even apparently good results regularly appear, due to

- very strong signals, or
- simply chance.

7.4 Outlook and Test in Real Environment

Any subgrouping result must be projectable into real geography!!

